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1. INTRODUCTION

For the past seven years, A.R.A.P., Inc. has had a series of contracts
from the Naval Air Systems Command to develop a computer model for determining
the detailed low-level atmospheric distributions of velocity, temperature,
moisture, refractive index, and the turbulent variances of these quantities
for marine environments. In addition to appropriately modeling the turbulent
transport of momeritum, heat, and moisture, it was necessary to incorporate
moisture change of phase and the physics of thermal radiation into this model
since low-level clouds or fog are a frequent occurance in the marine
atmospheric boundary layer. The development and a number of sampie
calculations exemplifying different phenomena are detailed in References 1-17.
Reference 18 which accompanies this report provides a detailed review of
modeling the atmospheric boundary layer using turbulent transport theory. It
includes a review of the status of our understanding of atmospheric boundary
layer dynamics, as well as a review of the modeling of the three physical
processes most critical for determining the atmospheric marine boundary layer.
These three are turbulent transport, thermal radiation, and change of phase of
atmospheric water. Reference 18 also provides a review of many of the sample
calculations made with the A.R.A.P. model which successfully illustrates
features expected in the atmospheric marine boundary layer. Section 5 of the
present report counterbalances those "successes" by detailing some problem
areas of the current model. Together they provide the detailed critical
review specified in the past years contract.

Two model calculations performed during the past year are detailed in
Section 2 and in Appendix A. The fog calculation presented in the next
section gives one possible reason why the surface air in fogs is generally
found to be cooler than the ocean surface. By following the evolution of a
fog which is formed by warm air passing over colder water under nocturnal
radiation conditions, it is shown that the enhanced radiational cooling
induced by the fog is sufficient to reduce the surface air temperature
relatively rapidly to below that of the water surface. During the past year
we have had discussions with E. Mack and W. Rodgers of Calspan regarding the
forthcoming fog model evaluation study. We look forward to exercising our
model as part of this study.

Appendix A details a calculation of the detailed mechanism of
Kelvin-Helmholtz wave breaking. The turbulent breaking process is modeled
using our second-order closure model to describe the small-scale turbulence,
while the large scale billow itself is calculated explicitly as a
two-dimensional flow. This calculation was partially supported by an ONR
contract which called for examining trackable clear-air, radar signals. The
large values of Cy, which can occur when this phenomenon occurs at the top of
a relatively moist boundary layer when the air above the inversion is much
dryer, makes this a likely candidate. This type of calculation can also be
used to investigate the detailed interaction of waves and turbulence along the
inversion and possibly lead to improved parameterization of this interaction
in the one-dimensional models.



Model development during the past year has concentrated on deriving a
hybrid integral-differential description of the planetary boundary layer which
would allow approximate solutions to be obtained using far fewer numerical
calculations, and on deriving a capability for incorporating precipitation as
a possibility in our two-phase representation of atmospheric water. Neither
of these developments have reached the point of being fully integrated into
our general model. Sections 3 and 4 detail the derivation and current status
of each.
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2. FOG EVOLUTION STUDY

Our purpose in this section is to demonstrate the mechanism by which a
fog generated by a decrease in surface temperature can relatively rapidly
invert its internal temperature gradient so that the surface becomes warmer
than the air in the fog. This mechanism is, of course, radiative cooling of
the fog top which then quickly moves down through the fog layer by convective
overturning. We present a case study of a fog produced by warm airflow over a
cold surface illustrating the phenomenon; we have considered the horizontally
homogeneous, time-dependent problem, but this is closely related to
steady-state advection with time corresponding to downstream distance.

In order to generate a cold water fog, we take an initially fog-free
boundary layer, and suddenly reduce the surface temperature. The magnitude of
the temperature change, AT, which is needed to produce a fog depends on the
jnitial relative humidity of the boundary layer near the surface. In the
absence of radiation effects, the surface layer analysis (Reference 10) can be
used to give the relationship between the critical AT and the critical
relative humidity. The relationship depends on the absolute temperature of
the surface, and the result is shown graphically in Figure 2.1. It is clear
that relative humidities below 95% will require a substantial change in
temperature to produce a fog. It should be noted that radiative effects will
change this result to an extent which depends on the relative magnitudes of
radiative and turbulent heat transfer.

Since we are dealing with surface temperature changes of only a few
degrees, this restriction on initial relative humidity causes problems if we
are trying to study the fog evolution in isolation. We need to set the
initial humidity very close to saturation, which means that a fog is about to
form even in the absence of our applied temperature change at the surface.
Thus, the generation of the fog depends as much on the precise initial state
of the boundary layer as on the externally applied forcing. We have therefore
not attempted any extensive study of the fog evolution from different initial
states with different surface temperature changes, but instead present a
single case study and use the integration as an illustrative example.

Qur initial boundary layer for this case study has 93% relative humidity
and is only about 50 m thick. The boundary layer was obtained by integrating
in time with a constant geostrophic wind equal to 5 m/sec and a constant sea
surface temperature for a few days to allow the humidity to increase. It
proved necessary to impose a significant subsidence velocity, 3 cm/sec at
1 km, to prevent the formation of a cloud layer; this is the reason for our
relatively thin boundary layer.

Figure 2.1 shows that a temperature drop of at least 6°C is necessary to
generate a purely advective fog in our init&a] boundary layer with its 93%
relative humidity. In fact, we used AT = 5-C, which means that we rely on
radiative cooling to assist in the fog production, so that the fog does not
appear immediately after the surface temperature drop. The evolution
following the surface temperature drop was carried out under nocturnal

11
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conditions.

Figures 2.1 through 2.5 show the profiles of temperature, heat flux,
1iquid water content, and radiative cooling at several times after the
change in surface conditions. We see from Figures 2.1 and 3.1 that the
initial boundary layer has a warm surface and a positive heat flux at
the bottoms this is required to balance the radiative cooling which is
evident at t = 0 in Figure 2.5

After 20 minutes, the surface temperature shows the 5°C decrease from
290%K to 285%, and that the heat flux has changed sign in the lowest 15 Mg
There is some cooling of the main part of the boundary layer, by about 0.5°C
due to the radiative cooling, and this occurs in the absence of a change in
surface temperature. However, in the latter case, the temperature only drops
by about 1°C over several hours and no fog is formed.

3

Figure 2.5 shows some radiative heating at the surface after 20 minutes;
but this only extends about 2 m vertically, so that the bulk of the boundary
layer is being cooled by both turbulent transfer and by radiation. This
causes the temperature to drop more rapidly than the humidity (which is only
reduced by turbulent transfer) so that the air eventually saturates and a fog
forms around t = 45 mins. At this stage the air has cooled, so that the
surface heat flux is reduced in magnitude from its value at 20 minutes, but
the air is still warmer than the surface. The fog extends about 12 m
vertically at this stage (see Figure 2.4). Also at t = 45 min, Figure 2.5
shows the beginning of the increased radiation from the top of the fog.

After t = 45 min the fog develops in depth and intensity, and the air
temperatures continue to fall due to radiative cooling from the fog top. The
heat flux profiles show that the lower part of the fog is cooled by turbulent
transfer. Shortly after t = 80 m, the air temperatures drop below the surface
temperature, and we have a warm surface fog thereafter. The development
continues after this time with the depth of the fog layer increasing and both
turbulent and radiative heat fluxes also increasing.

Thus, in this particular case, a cold water fog develops roughly 40
minutes after the change in surface temperature, and persists as a cold-water
fog for a further 40 minutes; after this time it is converted to a warm-water
fog and continues to deepen and intensify. One may expect that fogs initiated
by smaller drops in surface temperature will transition to a warm water fog
more quickly. For a cold-water fog to persist it appears necessary to have
both relatively strong winds and a drop in surface temperature which is
stronger than that indicated in Figure 2.1 for the particular ambient
relative humidity.

Figure 2.4 shows that the 1iquid water content in the calculated fog
increases rapidly up to an equilibrium level of about 1g/kg. This value
appears to be significantly higher than atmospheric measurements which
typically give 1iquid water contents of 0.1 - 0.2 g/kg. It seems likely that
the reason for this discrepancy is the absence of any mechanism for removal of
liquid water through gravitational settling in the model. In measurements

13
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over land, (Reference 19) concluded that only a small fraction of the 1iquid
water which condensed actually remained in the boundary layer. The balance was
presumed to have been deposited on the ground by gravitational setting. In
our model, we assume a fixed droplet size spectrum for the purposes of the
radiation calculation, and ignore gravitational settling since this is
negligible for our assumed spectrum. A significant improvement would probably
be obtained from a cloud physics' model which accounted for droplet growth
within the fog -and allowed the heavier drops to fall out. These processes
have not been unambiguously identified as dominant controlling mechanisms on
the liquid water content in atmospheric fog studies, but they are the most
1ikely candidates.
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3. HYBRID INTEGRAL-DIFFERENTIAL DESCRIPTION OF THE
PLANETARY BOUNDARY LAYER
USING SECOND-ORDER CLOSURE TURBULENCE THEORY

3.1. Introduction

In this work we describe a hybrid integral-differential procedure for the
prediction of the dynamics of the horizontally homogeneous planetary boundary
layer (PBL) according to a second-order closure theory of turbulence. This
procedure is aimed at enhancing the quality of the usual finite difference
solution of these equations by the incorporation of integral constraints. In
particular, the intent is that a finite difference solution utilizing on the
order of five grid cells should provide adequate accuracy with the hybrid
method. The result would be a computationally efficient procedure which would
be useful in operational applications. Such a method used as the basis for
the inhomogeneous (three-dimensional) PBL would offer similar computational
advantage and efficiency.

In Section 3.2 we present the basic concept of the method. In
Section 3.3 we indicate the manner in which integral constraints are
incorporated with the finite-difference solution. In Section 3.4, we
illustrate the method.

3.2. Concept of the Hybrid Method

The second-order closure theory of the PBL developed and in use at
A.R.A.P. (References 2, 7, 10) has proved quite successful in describing the
dynamics of the PBL under most general steady state and transient situations
and from stable to unstable conditions, including the presence of a capping
inversion layer. Even for the horizontally homogeneous layer, the
computational volume for executing these descriptions is still considerable,
requiring 30 to 50 vertical grid levels for adequate resolution, particularly
if an inversion is present. Many of the principal quantities of interest in
the PBL are global, or surface quantities, rather than detailed local interior
quantities. These key quantities include the surface fluxes of momentum,
heat, and species, as well as the total boundary.layer depth and the cross
isobaric wind angle. As such they are described by the integral forms of the
equations of motion; however, these integral forms contain integrals over the
profiles of the mean and turbulent field variables.

There are two regions of sharp gradients in the general PBL: the surface
layer and the inversion layer. It is therefore useful to treat these regions
as "integral" regions in which analytical or approximate forms of the profiles
are utilized in integral forms of the equations of motion. The "outer layer"
which exists between the surface layer and inversion layer may then be treated

either in integral ("single layer") fashion or with a full finite difference
treatment.
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The hybrid integral-differential method combines integral constraint
equations with the full finite difference equations which describe the outer
layer. The method can thus be used either with a large number of finite
difference levels or with a sparse number of levels with a "good" solution for
the boundary layer parameters still achievable in the 1imit in which the
finite difference levels consist of no points, i.e., the description is purely
integral. In this limit, the method bears some resemblance to various "layer"
parameterization procedures (References 20, 21, 22). However, there is an
essential difference between these layer parameterization schemes and the
hybrid procedure we describe here. Mathematical approximation for simplicity
of solution and physical modelling interplay together in the formulation of
the layer parameterization models cited above. The hybrid procedure described
here including its integral constraints is rigorously based upon the second
order closure theory of turbulence. Hence, turbulence modelling issues are
confined to the validity of the general second order closure theory. The
hybrid procedure is directed to the representation of this system of equations
and the method of solution of the system. Thus, in the hybrid method
described here, solution approximation issues are separated from turbulence
modelling issues. The capability for continuous transition from a purely
integral description to a fully differential description is one of the
features we have attempted to incorporate in the hybrid procedure. Of major
interest is the intent that the integral constraints which are part of the
hybrid method will significantly improve the solution of the PBL for cases in
which a sparse grid of only four to six finite difference levels is used over
that which would be obtained in absence of these integral constraints.

A full second-order closure PBL model which could adequately perform with
only four to six finite difference cells would be computationally efficient
and would possess advantages for operational implementation in various
applications as well as providing an economical basis for fully
three-dimensional (horizontally inhomogeneous) PBL descriptions.

The full range of PBL behavior ranging from stable to unstabie
including those capped by an in inversion layer may, in principle, be
treated with the hybrid method. Large scale divergence, humidity
effects, and radiative transport represent further key processes
which require inclusion in the hybrid method. We have selected the
following reasonable steps of development and evaluation of the hybrid
method for the I-D homogeneous PBL.

1. Neutral PBL

2. General PBL (stratified)

3. General PBL including inversion layer and large scale
divergence

4. General Moist PBL (including humidity and radiative
transport)

In the present report steps 1 and 2 have been completed and sample results
are presented. These results are worthy enough to encourage us to begin
steps 3, 4. The major activities in these steps involve the development
of the integral equations for the inversion layer as well as integral
equations for the prediction of the humidity boundary layer thickness

and fluxes and the cloud base and cloud top elevations.
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3.3 Integral Constraints and Their Incorporation Into the
Hybrid Method

3.3.1 Governing Equations of the Horizontally Homogeneous PBL

We consider a horizontally homogeneous PBL in coordinates X,y,z aligned
with z normal to the surface and x,y as coordinates in the plane perpendicular
to z. Let 0 = 0(U,V) be the velocity field in the plane and let (U4,V4) be
the geostrophic wind velocity components defining the pressure grad?engs. The
momentum equations in the (x,y) plane may be expressed as

a a —_— °

- (Uo = U) = s (uw) - f (Vv - Vg) + Uy (3.1)
) e . ,

— (Vo - V) = — (w) + f(U- Ug) + vV (3.2)
ot 9z 5

In the above, f is the Coriolis parameter, uw, vw are the stress components
and U_ = Um(Uw’Vm) is the velocity vector in the inviscid region above the
boundary layer. The corresponding mean thermal energy equation for the
virtual potential temperatuure o is

Lo -0 = L) -G+ o, (3.3)
ot VA4

where wo is the vertical turbulent heat flux and Q is the thermal energy
source term. The inviscid region forms of Eqs. (3.1) through (3.3) are

ol

— = - f(V -V, )= 0, (3.4)
ot e

Ve . .
— = +f(Ue-U, )= V¥, (3.5)
ot 9o
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éco = éoo (3'6)

where Ug,, Vg define the pressure gradients outside the boundary layer. In
what follows we shall assume Ug = Ug,, Vg = Vgo. Thus Egs. (3.1) through
(3.3) may be expressed as

S .
- (Up - U) = oy (uw) + f (Vg - V) (3.7)
O W o |

= (Vo - V) ) (vw) f (U, - U) (3.8)
S(oa-0) = TG - (G0 (3.9)

The turbulent moment equations at second-order closure level which we shall
employ include those for the Reynolds stresses, heat flux, temperature
variance, and the turbulent scale equation. We do not repeat the full set
of turbulence equations here, but refer the reader to Reference 7. The
two equations from the turbulence set which we will repeat here because of
their use in the integral developments are the turbulent kinetic energy
equation for the turbulent kinetic energy (1/2)q% and the turbulent scale
equation for the scale A. These are

3 1 — U — 3V —35
'._'(Tqé) = =-u —-vw~+j—wg
2 oz 9z 99

ME B . _Lﬂlz) ;.
= 4532(2q) 2 e 9 (3.10)
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an A [—oan, — an 8 o
oL (u 2y —)+0.075q+0.3_ﬁ(qAE>

Y -
_ 0.375 (i‘L“ v 0.8 0 933 (3.11)
q 3z a 97 .00

Eqs. (3.7) through (3.10) along with the remaining second-order closure
equations form the basis for the subsequent development.

The mean defect kinetic energy equation from Eqs. (3.7) and (3.8) is

o (m) b = g P
B - = @)+ (V- V) = (W)
0T 82 0Z
where
AL % (s €0

The total energy equation derived from Eq. (3.10) and the above equation

oF | 5 ] 23 [ p) 1 )]
g = L . - - + 33— A — = 2
ot 0z [uw (U= U) + vw (Voo = V) s ¥4 g 9z (2 9

Pl ol l(ﬂ)(l q2> (3.12)
o s \w)\2

where

= (m).}.lz
= . 2 9
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3.3.2 Integral Parameters and Integral Constraints

The important integral (global as opposed to local) parameters of the
neutral PBL are readily cited as the surface shear stress or shearing velocity
components (ui,vi) and the overall boundary layer depth (¢). In addition to
these, integral parameters may be generated by simply taking moments over the
mean and turbulent fluid field variables. The first moments are the average
velocity components:

$ o)

W = 661f U(z) dz &> = 651/ V(z) dz

Zp 20

In the above equations we have §g = (8 - zg) where zp is the effective
roughness height. These average velocities are equally expressible in terms
of the displacement thickness &y,sy defined as

§

)
sy - lﬁwl-lf (U, -U) dz 5, = |Uml'y (V_-V)dz  (3.13)

Zg Zo

where G = G(U,V) is the local velocity vector, Gm is the velocity vector in
the inviscid region above the boundary layer and (U,,V,) are the velocity
components in this inviscid region.

In a stable PBL, the surface heat flux expressed in terms of o, will
enter the set of integral parameters as well as the average temperature <g>,
or equivalently, a thermal energy thickness &y defined as

§g = (—J;lf (o -0)dz (3.14)

Zp

here 6_ is a reference temperature and 6_ is the virtual potential tempera-
ture ih the inviscid zone at the boundary layer edge. If other energy
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source terms appear in the thermal energy equation (such as radiative source
terms) the temperature ¢, requires more detailed definition appropriate to the
particular source term in question. Note that 6, may be a function of Z.

In an unstable PBL, the above parameters also enter; however in addition
a significant set of integral (over the inversion layer) parameters describing
the inversion layer will also enter. We do not take up the additional
integral parameters and constraint equations for the inversion layer in this
report as described on page 20.

The integral constraint equations corresponding to the foregoing integral
parameters are the first spatial moments of Eqs. (3.7) through (3.9). These
are (assuming zgp independent of t):

d > - .
- (1Upley) = uf + fo,]0,] (3.15)
o ¥ _ 2 1 -
;t- (|Uoo|°v) - Ve - f¢u|Uw| (3.16)
. _ > .
- (0,8g) = |ugle, + sy (3.17)
The surface shear ve1oc1_x vector is U2 = u (u2,vZ) where u? = -(uw) >
Vi = -(w)g, |uk|® = -(wb), and (), denotes a surface value. The °fhermal

energy source term sg is defined by

S

s9 = f [Qw - Q(z)] dz

Zo

The next moments involve products of the velocity. The defect mean
kinetic energy thickness Gém) is defined as

$ -lj ; ,
s{m = E;lf -L%—dz (3.18)
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where Er is a reference energy which requires specification to complete
definition. The turbulent kinetic energy thickness may be defined as

$

6(t) - E-I/lq?-dz
B r 2

Zp

where q is the RMS turbulence velocity. One can also consider the total
energy thickness ¢p defined as

s = s s oft) | (3.19)

Since it is the turbulent viscous field which underlies the defect mean
kinetic energy as well as the turbulent kinetic energy, it is appropriate to
select the reference energy E, as the surface turbulent kinetic energy
expressed in terms of the surface RMS turbulence velocity qo for neutral or
stable boundary layers:

E = RS (3.20)

We describe the method of selecting Ey in the case of unstable boundary layers
in Section 3.6. The integral total energy equation has the form

dz (3.21)

| o
——
~
m
S
"
(=
[ ey
8
+
<
-
8
+
le
z|
a
[a%
N
1
I
|l
N =
L0
™

ot

g = 50/ Adz (3.22)
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The integral equation governing & is then the integrated form of the scale
equation (3.11):

$
—8(26)=0.35f -—A(W-a—!+vw—)dz+0075 fqdz
at 0 g2 - ez 3z
Zo 20

- 0. 375f LD qA dz - 0.8 f 2 S dz (3.23)
7y Q¢ To

It can be seen that the Eqs. (3.15 - 3.17) and (3.21 - 3.23) form a
closed system for the integral parameters ©&y; oy, %9, 6g, & provided the
fluxes u,, v,, 9, and the integrals appearing in Eqs. (3.21) and (3.23) can
be expressed in terms of these quantities.
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3.3.3 Structure Function Approach to the Surface Flux Laws and the
Integral Parameters

We now take up the method of closure of the hybrid procedure which
unifies the integral constraints with the fully differential procedure. The
unifying vehicle is a system of structure functions. We consider first the
representation of the surface fluxes in terms of the integral parameters.

In the absence of stratification effects, the velocities and turbulent
momentum fluxes in the surface layer in a right handed orthogonal coordinate
system with the U component aligned parallel to the outer flow velocity

U°0 may be represented as
uw = - |ﬁ§i cosB (3.24)
W o= - |85 sing (1-¢;) (3.25)
IK*{
= n (z/zo)cosB (3.26)
v - lu*l In (2/2,)s1n8(1-9,) (3.27)

where UE = (u2,v2) s the vector of surface stress components lying in the

plane of motion. Here uw , vw are the turbuLent momentum fluxes parallel
and perpendicular to the outer flow velocity U_ while U, V are the
corresponding velocity components. The angie between the 1oca1 velocity U
and the outer flow U_ is denoted as £ . The absolute magn1tude of the
surface shear stress components lying in the plane of the flow is |3 -

The functions ¢1(z) , ¢,(z) are representations of the effects of the
Coriolis force-induced pressure gradient in forcing vw and V to deviate
from constant and Togarithmic values respectively which is the first
manifestation of the pressure gradient effect on the surface layer for

z >z, , (Reference 23):

LA Gl
¢,(z2) = ——— [2 -2 -
L %, sing <|0_|

cosB zy(z)] (3.28)
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£10,| ,
l1)2( z) = ) {Z - Z0 - ZO ‘In(z/zo)

Iu*l sing 1n(z/z

U |
L | — cosp [;y(z) - [zO Tn(z/zo) - (z-zo)]]:} (3.29)

<|U0_|

(oo}

v(2) = In(z/z2)) - (1-2,/2)

Now let «, denote the angle of the outer flow velocity ﬁ with respect
to the x axis of an arbitrary coord1nate system fixed to the earth. Let «
denote the angle of the Tocal velocity U makes with the same coordinate
system. The angle B 1is related to o, , @ as

The surface layer momentum flux and velocity components in this general
coordinate system in which we shall formulate the procedure are given by

uw = - Iﬁ*l2 [cosa + sinB sino_ ¢](2)J (3.30)
YW o= - |u*|2 [sino - sinB cosa_ ¢](z)] (3.31)
67l
= 1n(z/zo) [cosa + sing sina_ ¢2(z)] (3.32)
N _
vV = 1n(z/zo) [sina - sinB cosa ¢2(z)] (3.33)

Consider z = §g as the height of the surface layer. Then at this
level we have from Eqs. (3.32) and (3.33)

[Uy| = 1% | (3.34)
o @(65)1n(65/zo)
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where

2(s,) = {1 + sin’8 0,(8)[0,(8;) - 213'/°

Let us now compare this result with the Monin-Obukhov surface layer similarity
theory for stratified flows which (neglecting Coriolis effects) has the form

+
| U, | . (3.35)
u = .
€3 1n(6s/zo) Uy

where p, =u (GS/L) is a Monin-Obukhov similarity function for momentum
transfer and ﬁas different forms depending upon whether the Monin-Obukhov
length L is greater or less than zero. The Monin-Obukhov Tength is defined
as

>2
To [u*l
gk 6

L =

We observe that the form Eq. (3.34) which includes first order corrections

for the effects of the Coriolis forces in the surface layer was derived with
the condition that u, and the RMS turbulence velocity Q, were approximately
constant in the surface layer. On the other hand, the Mgn1n-0bukhov

similarity form (3.35) is based on the condition that |u,| 1s constant in

the surface layer. For flows in which the angle B is not too large, it may
then be possible to obtain a general "extended" surface layer resulting in

the form

[ux] = —5 (3.36)

D, = @(Gs/zo)1n(és/zo) +u (3.37)

u

Although we have not proved it here, we conjecture that the form Eq. (3.37)
is correct to first order in the surface layer expansion parameter

>
£IU_ |6
5./L (3.38)

s C

2] | sing|
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where Eq. (3.38) defines the Coriolis surface length L. which can be
interpreted as the height at which Coriolis force induced pressure gradients
disturb the uniformity of |u,| and the pure logarithmic form of the
velocity variation in the surface layer.

We note that by choosing &g << [L| , &g << L. we may always render
the form of D, in Eq. (3.37) in the pure logarithmic form. There is a
usefulness, however, in allowing the surface layer to be as thick as possible
with consideration for the validity of Egs. (3.30) - (3.33) in application
of the hybrid procedure with a space-grid finite difference procedure.
Incorporation of virtually the full logarithmic layer below z = &g then
allows the finite difference procedure a better resolution of the more linear
region for z > &, . In the absence of stratification, Eqgs. (3.30) - (3.33)
are quite accurate even for &g > L. yielding results that are within 10% of
the exact solution for the steady state PBL at &5 = 10 L. .

The counterparts to Egs. (3.30) - (3.33) for heat flux and temperature
distribution in the surface layer are

WO = - |U,|64 (3.39)

6 - B, = 6,PpD/x (3.40)

from which we may write

6*=T,—D-(6 -0 ) (3.4])

R S 0©

where 6_ is the virtual potential temperature at z =6, , 6, 1is the
surface “temperature, 6, is a reference temperature, and Pp "is the
turbulent Prandtl number. The function Dy 1like D, consists of a
logarithmic portion and a stratification portion embedded in the Monin-Obukhov
simlilarity function Hg :

De = 1n(§s/zo) + pe(as/L) (3.42)

To relate the fluxes |u,|, 64 , and the surface layer angle o (or B)
to the integral parameters &, , §, , &5 we express U g » and
65-6, 1in terms of the structure functions S?Us , S?V) fsfey as follows:
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L=
n
w
—
c
~
A
[
v

(3.43)
vio= sWeyns (3.44)
o -0 =58> (3.45)
S 0 00 .

where the ( )' indicates representation in the coordinate system aligned with
U and the < >, indicate a spatial average over the outer part of the
boundary layer:

TZege avgg3ges may in turn be related to the displacement thicknesses 660) "

830 as
<U'> = |U_|(1 - cosa 605 sina_ {05 ) (3.46)
0 ) o Ty o) o "y SO -
<v'> = |0 |(sing 6(0)/6 - cosa 6(0)/6 ) (3.47)
0 o 0 ~U S0 o "y so )
. ' (o)
B - 6,>, = 0.1(8,-8,)/0, - &g /8] (3.48)

where &8¢, = 6 - 85 . Thus, given the gtructure functions S(U) s S(V) | S(e)
we obtain the fsux 1?wi which re]ate |ux] » @ (or B), 6, to the integral
parameters g

>
L <Gl
Iu*l =0 (3.49)
u
G (eoo_e ) (3.50)
*  PpDy s
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- - '.I ] ]
B=a- o, —.tan (Vs/Us)

- . , _ 3
with U., V. and ©-6  given as

Ug = lﬁmls(u)(1 - cosa 650)/550 - sino_ 550)/550)

i (V) (o) (o)

Vg = |0 [s" (sina, 8,77/ - cosa, 8. °'/5 )

>* o 1 2 ] 2

B =/ (u)? + (vy)

6 -6
X (6) © "0 (o)

(ew'es) = 8,3 5, = 8y /84
The "outer" thicknesses 660) 3 6$°> . Géo) are related to the total
thicknesses Gu s GV , 56 as

(o) _ (1)
8577 = 85 - 8

(1)

where the inner thicknesses Gj

(SS
(i) _ L
RN / (U -U)dz
z
0
65
6\(/1) = (6 O/GO)I’U*OOI-] / (Voo-V)dZ
z
0]
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(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

are related to |U,| , B, 64 through

(3.56)

(3.57)



O

so’ 0

s{1) = (s, 18,0, [ (6_-8)dz (3.58)

2

~where U, V, 6 1in Egs. (3.56) - (3.58) are given in terms of the surface
layer expressions (3.32), (3.33), and (3.40).

Equations (3.49) - (3.55) are the key resylts of this section. They
provide the surface flux laws which relate u, and 6, to the integral
parameters &, , Oy ?e ?ng in so doing naturally introduce the structure
functions  S(U), S(V . S0) which are obtained from detailed solution of
the differential equations. Equatigns (3.36; and (3.41) are exact statements
provided the structure functions s(u) , StV) s(6) are known. These
equations relate the surface fluxes ux , vx , 64 to the integral thickness
8y » 8y » 85 . As such, they may be considered friction and heat flux laws
for integra? PBL description. We now observe that if the d?tai1ed profz1§s
U(z), v(z), 6(z) are known, the structure functions s(UJ , s(V) s(8
may be directly calculated (with specification of the thickness 8s). Hence,
these structure functions may be calculated in terms of the profiles generated
by the finite difference solution. It may be further observed that the
integral constraints furnish u, , v, , 6, in terms of the integral thickness
Sy » Sy » 6 . Hence, these surfaces fluxes together with the surface layer
functions Egs. (3.52, 3.33, and 3.40), determine the boundary data at z = g
for the finite difference description of the domain &g <z < & . As such,
the derivative boundary condition normally required at the top of the surface
layer z = 64 for the finite-difference equations is dispensed with. The
derivative boundary conditions are thus replaced by the integral constraints.
The interest is that this procedure for treating the surface conditions should
significantly improve the quality of the overall finite difference description
when a sparse set of grid levels is utilized consisting of perhaps only four
to six grid cells.
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3.3.4 Transfer Coefficients

We may define transfer coefficients cf , Cg “for moﬁentum and heat
transfer to the surface as

-2

| U] (3.59)
Cp = .

L,

|64 (3.60)
C, = .
° 18, le,

The momentum and heat fluxes are then expressed as

uE = Cg |ﬁ¥12 cosa (3.61)
vi =cg lﬁmlz sina (3.62)
|Gul0x = cglT, 10, (3.63)

It is also useful to define differential momgntum and geat transfer coefficients
which characterize the rates of change of uf , VE s |uy|6, with respect to
the integral parameters &, , 6§, , 8 (with all other quantities held fixed).
Let 6, represent the vector o¥ thicknesses &y , 8y » g and Cy the vector
of fluxes cgcosa , cgsina , Cg :

6Ll CfCOSOL
B ] = C Sinu 3.64
6(!. l;'_‘l1|III COL f ( )
ﬁa Co

The differential exchange coefficients CaB are then defined as
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CaB

= 60 BCa/BSB

(3.65)

For the case in which a, = 0 these exchange coefficients have the form

11

12

21

22

13

23

31

32

C33

) | (5(U) 2(
[
(V)
o, | ° (2
s = -
U r~
J ‘S(V) Q(

In the foregoing

Au =

1+3A
A u> cosZB + sinZBJ

1+3Au
A - SinBcosp
1430, i
x -1 cosBs1nB‘
1437 L
A V) sin25 + cos.2f3:_J

cosB
e i S(e) 2 ﬁﬂ
f 65-60 A
sing
L S(U) COsSB
Y 10| (1-3Ae>
6 |+ A
lUsl S( ) sing
F . 6, () <'I-Ae>
5] es-eo A
LMy p =L o
D oL 6 D oL
u 6

(3.66)

(3.67)

(3.68)

(3.69)



A=1+28 - bg

In the stable 1imit where My ~ 3

M u
0
A:_u A:____
u Du 6 De
and obey
-]’<Au<0 -]<A8<0
with
Au , Ae - 0 as L -
Ay Ae -+ -] as L~-0

We may note that as L+, A > 0 and the coefficients Cy3 , Cp3 + 0 .
The momentum flux then becomes 3ecoup1ed from the heat flux. On the other
hand, for finite L , the heat flux and momentum flux are coupled. In the
case where o = 0 , the Brunt Vdisdild frequency in the surface layer is
given by

(S) _ >
wgy’ = Ciata (Tl/s, (3.70)

When L < 0, the product C13€31 1is less than zero and the Brunt Vdisaili
frequency is imaginary.

37
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3.3.5 Surface Layer Depth

Let us now consider the surface 1ayer depth ) This depth is rigorously
determined by- the strength of the terms in Egs. ? - 3.9) which disturb the
condition

) — ==y L
37 (uw , vw , w8) = 0

and the validity of the surface layer solutions Egs. (3.24 - 3.27). There are
three general effects: (1) the Coriolis effect, (2) unsteady effects, and
(3) thermal source terms. From the work of Reference 23 it can be shown

that the Coriolis effect leads to GS determined by

5, < L, = |sing| [S21/()5] 1T, (3.71)

Let us now conzi
(22

?er th gnsteady effects characterized by unsteady forcing
frequencies f z

Such effects Tead to conditions of the form

H]

>

5, < [W/Ues 1 1T, 5 < [Tl lenl /(£ 16,) (3.72)

[oe)

Under all conditions the surface layer depth GS should be Timited by

5 < L] (3.73)

We remark that although the expedient of setting

§_=¢6 (3.74)

(where € 1is some small fraction) is simple and attractive, such a procedure

is not necessarily consistent with the definition of the surface layer as that
region in which the solutions Egs. (3.24 - 3.27) are valid. Although Eq.

(3.74) would likely lead to a determination of &g consistent with Eqs. (3.24 -
3.27), the conditions (3.71), (3.72), and (3.73) are the more rigorous conditions
for the determination of Gs
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3.3.6 Energy Thickness and the Dynamic Equation for the PBL Thickness

We now consider the development of the integral energy equation in terms
of integral structure functions. We consider the choice of a characteristic
energy E. and characteristic RMS turbulence velocity g, . In a stable
PBL (L > 0) we select qr as the surface value g5 . In the case of an
unstable PBL (L < 0) the surface turbulence level does not characterize the
average turbulence levels within the PBL because of the buoyant production
of turbulence. In this case, we select q. as

+ 13 \1/3
84, U]
= 1 - 22
% = % L 3
0

Hence, the reference turbulence and energy levels are given by

q0 L>0
q, = » 13\ 1/3 (3.75)
BE- lu*l 0
gt g 3 E
qO
12
E. =7 a, (3.76)

We now represent the integrals appearing in the total energy equation as

5
q
/ @ (§ af)az = s T sk (3.77)
z
0
5 =
. (b) IU*I
/ él We dz = - §;° —— & (3.78)
0]
Z
o]}
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The abov ﬁquations are the defining equations for the structure functions

Séd) , SkP) " which are the structure functions for turbulent decay and buoyant
production/destruction of the total energy. The quantity & 1is the character-
istic turbulent scale size with the boundary layer. This quantity is governed
by the integral form of the turbulent scale equation which is described in
Section 3.7.

In the usual fasion we define &, as that elevation at which the
viscous turbulent levels have fallen to an arbitrarily small fraction of the
maximum values within the boundary layer. We choose to relate this thickness
Sy directly to the total energy thickness &g . Thus, we relate &g through
a parameter r as

(3.79)

O
I

-

O

§ =ré. + zO

The total energy integral equation now becomes an equation for &y by
eliminating & through Eq. (3.79):

2

5t (E

6,) =l E (6] - 5) - wlPlE s (3.80)

In Eq. (3.80), the energy decay rate w(d) is given by

m

(4) . o(d)

o {4) o /(an) (3.81)

while the buoyant production/decay rate is given by

w® = 5P 13 e £ ) (3.82)

*
The equilibrium boundary layer thickness 60 is given by

. araudu_+ viv)
§ = (3.83)
2 NN

E qr r
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We see that in the neutral case (L » = » the total boundary layer thiskTess
relaxes to the equilibrium thickness S, on a time scale given by wéd L
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3.3.7 Average Scale and Integral Scale Equation

It will be noted that in the expression of the various integrals of the
total energy equation in terms of non-dimensional structure functions, it
was necessary to utilize the average scale £ . We now take up the structure
function transformation of the integrated ssale equation (3.23) which governs
% . We define the structure functions S§d) for the turbulent destruction of

scale as
8
2
A= 3U, — vy 0.375 3ah
[ [0.35 q2 (uw 5zt W 82) - =% (az) ldz
z
0
(d) uiU°o + vivw
=-S5y | —— : (3.84)
2 >
q,.| 0|

The structure function for turbulent production of scale Sép) is defined
by the statement

S

/ 0.075 qdz = s{P q 6, (3.85)

YA
0

The structure function for buoyant production/destruction of scale is defined
by

6 A _ (b) IU*|3 50
wi —Tg—we dz==S2 — T % (3.86)
0
Zo

q Kq,.

The integral form of the scale equation may then be expressed as
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Y

~EWY o~ o

S

1 23 _
§_ ot (260) T o>
0 a. [0,
by 10l
- 0.85," —
qu

?10‘% (28,)) = wéd)(ﬂ*-l) - ulbly

L
(d) . .
where wp is the scale decay rate given by
2 2
(d) _ (@) (sl * Vi)
w =S
L L >
9801 Vs
and wéb) is the buoyant production/decay rate for scale:
[,
ol®) - 0.8 s{0)
quL

*
The equilibrium scale 2 s given by

2
. st U .

2' =
Séd)(uium + vaw) g

(3.87)

(3.89)

(3.91)

‘ (
Nomingl values for these structure functions are Séd) = 02, Sgp) =
0.0125, S b) = 0.5. The behavior of the scale in the neutral and stable
1imits is of particular interest. In the neutral limit the scale will take

the equilibrium value indicated by Eq. (3.91).

For the above nominal values

of the structure functions we find for a steady state, neutral PBL (with

V._=0)

Lo}



£, = 0.06 & (3.92)

in good agreement with the characteristic scale predicted in Reference 24.

In the strongly stable 1imit (0 < L << &o) the scale will tend to an
equilibrium value given by the balance between the last two terms of

eq. (3.87)

(p) 3 '
S
1 S (3.93)

siP)(0.8) |4,

g =

which yields & = 0.16 L for the nominal structure function values. This
result is in agreement with the appropriate 1imit on 2 of = 0.2 L for

strongly stable boundary layers.

a4
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3.3.8 Linearized Forms of the Integral Equations

We may express the integral equations for the mean flow, Eqs. (3.20 -
3.22) in terms of the thickness and flux vectors Ga . € defined in
Section 3.4 as

Uoley + 5 585 = B g (3.94)

where ZaB is the partial anti-symmetric matrix:

0 0
ZaB = -1 0 0 (3.95)
0 0 O

and BaB is the matrix of forcing functions:

()
£ 0 o
Bg = | O f&“) 0 (3.96)
(e)
0 0 £
where
d|U_|
(o) _ (=) _ 1 ®
TN T Sl
do
() _ 1 "r
A ol (3.98)

The linear expansion of ¢, about some state c,(0) , §,(0) is
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c =c (0) - 5;1ca8(58-58(0))

where C,o s the differential transfer matrix defined by Eq. (3.65). Sub-
stituting this form into Eq. (3.94) we obtain

dé

o _ N -1y
Tt = [Uole (0% A s, + 677 U, 1C584(0) (3.99)

where Ayg is the fundamental matrix of the system:

B (3.100)

A, = fL wICaB - Bug

aB

If the state Ga(O) 1s an equilibrium state, then the equation governing

perturbations "6/ = -8 (0) about this state is
déé
= '
It AaBaB (3.101)

We thus see that the matrix contains all the fundamental linear response
modes of the system including %ﬁe rotational (Coriolis) modes and the Brunt
Véisdaild modes. Two of the eigenvalues of Ayg may be identified with the
rotational modes while the third eigenvalue may be identified with the Brunt
Vdisdild mode.

The integral equations for the boundary layer thickness &. and the
scale & , Egs. (3.80) and (3.89) are similarly in a form in which linearization
is readily applied. We point out the Tinear forms of these equations because
they form the basis of the computationa] solution technique. We do not finite
difference the equations for 8o » & . Rather we utilize the linearized,
constant coefficient forms of tﬁese equations, assuming their validity over a
small time interval At connecting the two states at ty , tp in terms of
analytical solutions to the linear forms with the coefficients held fixed at
their values at the time ty . After the solution is obtained at time t; ,
the coefficients are re-evaluated and the process is repeated for the next
Tevel t3 =ty + At , etc.
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3.3.9 Coupling of the Integral and Differential Systems

As noted previously, the integral equations for the variables
us Oy §qs 8, & and the fluxes uz, vz, 6, form a closed dynamical

system if the structure functions S(U), S(V), S(e), SE(b), S(gz Sép),

s&b) are known. Because of the manner in which these structure functions
are defined, they are only sensitive to the integrals over detailed
profile shape and are not sensitive to the characteristic magnitudes

of the variables. Thus, one can specify the structure functions as

pure non-dimensional numbers and obtain reasonably good solutions

for the integral and surface parameters. For example, for a neutral

PBL with unsteady forcing which is not too rapid compared to the rotation

8., ¢

rate £, the values 59 = 0.8, sV) < 3.0, séd) Zaoh 15, séb) - 0.0125,
séd) = (0.2 r =0.35 will yield satisfactory results with 65 = SLC.

For flows with strong forcing, more accurate results are to be
obtained by introducing a finite difference system in the "outer" domain
§_ < z < & wherein the general, second order closure system of equations
i3 solved.

This finite difference system requires boundary data at the surface
z = §; as well as the free stream conditions at z = 6. Finite difference
derivative boundary conditions which would otherwise be required at the
surface layer "edge" z = §. are dispensed with; instead, the boundary
data for U(S8,, t), 6(8s, ti, ... uw(8g, t), ... are taken from the integrally
determined surface layer conditions and flux laws. Hence, the surface
boundary condition for the differential equation set are fixed by the
integral parameters.

The coupling back upon the integral constraint equations from the
finite difference generated profiles is through the non-dimensional
structure functions which involve integrals over the profiles of the
velocity, temperature, and turbulence fields. In the 1imit in which
no finite difference points are used, i.e., the method is purely integral,
these structure functions may be specified as pure numbers. Hence, at
appropriate time levels in the course of evolution of the integral
equations, the structure functions are up-dated by explicit calculation
of the integrals over the profiles generated by the evolution of the
differential equation set.

The finite difference system is set up on a dynamically moving grid
whose first point is located at z = 8¢(t) and whose uppermost (top) point
is located at z = §(t). The motion of the grid is thus fixed by §(t)
which is in turn determined by the integral equation of the total kinetic
energy. The basic flow of information is shown schematically in Figure 3.1.
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Figure 3.1 - Information flow in hybrid integral-differentiation
description of the PBL.
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3.4 Illustrations

3.4.1 PBL Subjected to Unsteady Forcing

As a basis for illustration we consider a particular unsteady problem for
the neutral PBL. These problems will involve ramp transitions of the inviscid
region velocity from one steady state level to another. If Ue(0) is the
initial steady state and U,(1) is the final steady state, the ramp transition
is defined by

u(0) t < tg
Un(l) - Ue(O
Uo(t) = {UL(0) + &1 ) f(t -tg) to < t < tg+ tfl (3.102)
T
-1
(Uwl1) -l <t

The transient is specified by the parameters U_(0), U,(1), t. The general
problem is: A boundary layer in steady state corresponding to an inviscid
velocity U_(0) is subjected to a linearly increasing inviscid velocity over a
time period tf until it reaches a value U_(1) at which point the velocity
remains fixed at the new steady state value Uw(l). Determine the motion
within the PBL. As such, this problem allows us to study the neutral PBL
subject to both Coriolis effects and unsteady forcing.

The geostrophic conditons (Ug, Vg) are established so that for all time,

U, = U_(t) Tha B (3.103)

We select conditions exhibited in Table 3.4.1. It should be observed
that these conditions describe a very severe transient in that the forcing

frequency f{u) [Eq. (3.97)] is initially ten times greater than the Coriolis
frequency f.
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Table 3.4.1
Conditions for Neutral PBL Subjected to Ramp Transition

Uo(0) = 1 m/sec

Uo(l) = 10 m/sec
T =1
f = 10-% sec-!

The solutions for this problem are determined in three different ways. In the
first, we utilize the standard A.R.A.P. second-order closure theory
implemented in a fully finite-difference procedure utilizing of the order of
40 grid levels. The PBL response (as reflected in surface RMS turbulence and
cross-isobaric angle) computed in this manner is shown in Figure 3.2. In the
coordinates utilized, the Coriolis period is equal to 2n. It can be seen that
qo makes an initially rapid transition (including an overshoot and undershoot)
during the period of acceleration of the outer flow and then oscillates about
its new level with the oscillation slowly damping. The angle particularly
evidences higher harmonics of f. These result from the nonequilibrium
rotational wave modes which are present in the turbulence equations.

In Figure 3.3 we show the response to the same probiem as computed
in the second manner: the hybrid procedure with no finite difference
leveis, i.e., the procedure in pure integral form. The integral modei
accurately exhibits the initial overshoot in qo (but fails to give an
undershoot), and then yields a similar decline over the period of
acceleration. Because it does not contain dynamic equations for the
full Reynolds stresses, the pure integral form of the hybrid model does
not yield the higher harmonics of f, but only oscillates at the fundamental.
The average angle response follows the full finite difference solution
well but climbs more rapidly to the peak value following the period of
outer flow acceleration.

In Figure 3.4 we show the response to the same problem as computed
in the third manner: the hybrid procedure with 5 finite difference levels.
The response is equally well predicted with a tendency for the first
harmonic (but not a second) to appear in the angle response. We remark
that the hybrid procedure with only 5 grid levels is somewhat sensitive
to numerical instabilities in the following sense. If the profile
computation over 5 points develops any significant errors, the degrading
influence on the structure functions can feed back through the surface
conditions and further degrade the profile structure near the surface.

Nonetheless, the hybrid procedure executes at least 8 times faster
than the full finite difference procedure and as much as 40 times faster
for the purely integral version. The good quality of these resuits,
given the vast decrease in computer resources spent, seems highly
worthwhile.
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Figure 3.2(a).

Surface RMS turbulence response to unsteady forcing of the PBL.

Period of outerflow acceleration is from ft = 0 to ft = 1.
Standard ARAP finite difference model. '
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Figure 3.2(b). Cross isobaric angle for conditions of Figure 3.1(a).
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Figure 3.3(a). Surface RMS turbulence response corresponding to Figure 3.2(a)

but with purely integral form of hybrid procedure.
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Figure 3.4(a). Surface RMS turbulence response corresponding to Figure 3.2(a) but
with 5 grid level hybrid procedure. '
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3.4.2 Stable PBL ITlustrations

As a second illustration, we consider the computation of stable PBL
response. Our illustration for this case will be the archetypai problem
of a constant surface cooling rate in which a quasi-steady boundary layer
is established (References 25-27). We begin with an equilibrium neutrai
PBL at time t = 0 at which time a constant surface cooling rate 1is
applied. After a period of several Coriolis periods, the quasi-steady
state is established. The computation illustrated here is for the
purely integral version of the hybrid procedure. The conditions
for the illustration are presented in Table 3.4.2.

Table 3.4.2

Conditions for Constant Surface Cooling
Rate Stable PBL Illustration

0| 10 m/sec
-2
z, 10~“m B
10 sec
98 1 K/hr
dt
s(U) 0.8
s(V) 3.0
s(8) 0.6
(d)
S 0.15
(b)
S 0.5
(d)
S, 0.20
s (P) 0.0125
L2
(b)
S, 0.4
r 0.35
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The evolution of the boundary layer for these conditions is
shown in Figure 3.5. After a transient of approximately 2 Coriolis
periods the characteristic boundary layer parameters approach quasi-
steady values. These quasi-steady values are consistent with those
predicted in Reference 25. The hybrid model indicates an initial
undershogt in cross-isobaric angle of -15° before evolving to a steady
state values of approximately 50°. This steady state value is
about 10° Tlarger than that predicted in Reference 25; no attempt has
been made to fine-tune the values of the structure functions in these
illustrations to effect more exact comparisons. The value of the

Zilitinkevich parameter d =5/f/|a*|L is shown in Figure 3.5(e) and

its value of 0.44 at quasi-steady state is closely consistent with
that of Reference 24 and 25.
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Figure 3.5(a). Boundary layer thickness of response following onset of a constant

surface cooling rate corresponding to the condition of Table 3.4.2.
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4. THE INTERACTION OF TURBULENCE WITH PRECIPITATION:
FORMULATION OF A PRECIPITATION MODEL
FOR THE PLANETARY BOUNDARY LAYER

4.1 Introduction

Many of the atmospheric Planetary boundary layer (PBL) processes and
episodes which are successfully discrirable in terms of a second order
closure theory of turbulence such as that in use at ARAP (Reference 10)
involve the transport, condensation, and evaporation of water. It is
important that such models correctly describe the overall balance of
water by the various evaporation, condensation, diffusion, and advection
mechanisims. In some cases of interest, precipitation of cloud water in
the form of rain or drizzle to the surface is an important process controlling
the balance of water. In addition, precipitation is of interest in its
own right; for it is desirable to predict the 1ikelihood and magnitude of
precipitation drizzle or rain events. In the present work we therefore
present a discussion and model of precipitation for use in atmospheric PBL
models. Because we restrict attention to the PBL, we consider only warm
(non-freezing) precipitation and cloud droplet growth processes.

Following the stage of condensation growth in the early period of
cloud formation (droplet radii r < 10 um), further growth of the cloud
droplets to reach precipitation size is generally believed to occur by
collisional coalescence of droplets. Gravitational sedimentation has
received virtually the exclusive attention of theorists as the collisional
coalescence mechanism of atmospheric clouds (References 28-30). There
seems little doubt that the collisional coalescence of drops of different
size is an important droplet growth mechanism at some stages of cloud
evolution. On the other hand, in the early stages of growth (1 < r < 50 um)
this mechanism possesses certain limitations. Two of these limitations
are (1) the inherent requirement of differential size for a non-zero
collision rate, and (2) the sharply diminished collision efficiencies
which result for the vanishing relative Reynolds numbers of differential
sedimentation when both collision partners approach the same size. These
two limitations when viewed in the light of a further result from classical
condensation theory - namely the narrowing of the droplet spectrum into a
single size during condensation growth - suggest that collisional growth
mechanisms other than gravitational sedimentation may play an important
role in the initial growth stage of clouds into precipitation size drops.
In particular, atmospheric turbulence may play an important and direct role
in the evolution of the cloud drop spectrum.

We propose, therefore, to include in the collision mechanism of our
precipitation model the effects of atmospheric turbulence in addition to
classical gravitational sedimentation. There appear to be at least two
unique ways in which turbulence affects the evolution of the cloud drop
spectrum. The first is in the dynamics of condensation. Although classical
condensation theory predicts a narrowing spectrum, (forcing a single size
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cloud droplet) it appears that when condensation is considered in a turbulent
environment, the spectrum may be broadened (References 31, 32). The second
role is in the collisional growth stage in which the turbulent velocity

field provides not one but several mechanisms for the collisions of drops.

In Section 4.2 we review the stages of condensation and growth processes
for clouds pointing out the regimes in which turbulence can bé of importance.

In Section 4.3 we discuss in detail the turbulence collision mechanisms and
develop the collision kernel for the processes of both turbulence induced
collisions and gravitational sedimentation. In section 4 we present a two-
group precipitation model based upon the growth mechanisms discussed in Section
4.3 which we term the Cloud-Precipitation (CP) model. In Section 4.5

we present some illustration calculations of the CP model for the infinite,

homogenous cloud.

4.2 Condensation, Evolution of the Cloud Droplet Spectrum, and Precipitation

To set the stage for the model we propose, we first review the various
processes which take place from the onset of a water mixing ratio in excess of
the saturation value to the final stage (if it occurs in the time scale of a
particular problem) in which drops precipitate to the surface. We point out
the role of turbulence in certain of these stages of development. The stages
of drop evolution may be defined in the following scheme:

(1) The Nuclei Activation Stage
drop (particle) size
time scale

_2 N
10 wm < r< 1 um
1 sec. or less

(2) The Condensation Growth Stage
drop size
time scale

T ym 27 210 um
1-100 sec.

(3) The Collisional Growth Stage
drop size
time scaie

10 um % r <103 um
3 100 sec. but highly variable

(4) The Sedimentation Stage
drop size
time scale

100 um < r < 10° um
107%-10 hours

non

Once the water mixing ratio exceeds the local saturation value, nuclei
must be activated before water may condense in realistic time scales. Foilow-
ing nuclei activation, drops grow by the direct condensation of vapor and in-
teract negligibly via collisions. In most atmospheric situations, the liquid
water formed by the overall amount of excess saturation and the number of nu-
clei available and activated results in a cloud with drop number densities
ranging from 108-10° m™® and radii ranging from 1 to 10 um. It should be noted
that classical condensation theory predicts a spectrum evolution through the
stages of nuclei activation and condensation growth which is progressively
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narrowing (Reference 33) ultimately yielding a cloud in which all particles )
are the same size. Thus, in classical condensation theory, size differential
in the cloud spectrum can only resuit from the residue of size differential
of nuclei. A Tlimited amount of work has been devoted to the examination

of droplet evolution in the nuclei activation and condensation growth stages
in a turbulent environment (References 31,32). Although the "turbulence"
models used in these investigations are seriously over simplified, it does
appear that turbulent condensation theory provides significant broadening

of the droplet spectrum which can dominate over the "natural narrowing" i
of classical condensation theory. We have made some preliminary investigations
of more rigorous turbulent, second order cliosure versions of the droplet
kinetic equations and find both broadening and narrowing effects which can
result from the turbulent correlations Ww',W &' where w is the vertical

velocity, 6 the potential temperature, and an overbar deno?es a turbulent
ensemble average. We shall report on these investigations in subseqguent
publications.

For cloud droplets to grow significantly beyond the range of radii

r < 10 um up to precipitation sizes, collisional coalescence processes
must be operative. The time scale for these collisional processes are highly

variable when turbulence induced collisions are included in addition to the
gravitational sedimentation collisions of classical coalescence theory. We
find this result (which wiil be discussed in Section 3) consistent with the
highly variabie nature of natural ciouds to grow to rain or drizzie size drops.

A critical feature of the collisional growth process is the creation of a
small number of drops much larger than the average. This long tail effect
in the distribution function 1is the result of the increasing collision
cross-section of large drops.

The final stages of drop evolution occur when drops have grown signi-
ficantly large enough to develop a significant precipitation velocity. These
precipitable drops then leave the cloud and progress to the surface where
they then leave the atmosphere.

The precipitation model we shall describe in section 4 in the present
work treats the first two stages of cloud evolution described above in very
simple parametric fashion. The collisional growth and sedimentation processes,
however, will be treated in some mechanistic detail that includes the effects
of turbulence upon collisional growth.

4.3 Turbulence and the Collisional/Coalescence Process

We first consider the conceptual picture of atmospheric turbulence and
its influence on the collisions of Tiquid drops embedded in such an environ-
ment. Atmospheric turbulence consists of the random motion of eddy struc-
tures ranging from the largest energy containing scales to the dissipation
scales where molecular viscosity comes into play. The largest scale is of the
order of the largest characteristic macro-length L (e.g. the PBL depth, ter-
rain dimension, etc.) while the smallest scale is of the order of the Taylor
micro-scale A, defined in terms of the_turbulerce energy dissipation ¢ = a’/h
as Xo = (n®/e)’% where n s the molecular kinematic viscosity. Similarly, a
micro-time characterizing the time scale of fluctuations of the dissipation can
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be defined as 1o =(n/e)% and a micro-acceieraiion cnaracterizing the accei-

eration o7 the flow field within the eddie as ao = Xo/t,%. The magnitudes of

these quantities for the range of turbulence dissipation rates encountered in
the atmosphere are present in table 4.1.

Table 4.1

Turbulence Length, Time, and Acceleration Scales in the Atmosphere
for Dissipation Scale Eddies

— il = L F, g "Gg
(m?/sec. ?) (pym ) (ms ) -
0.001 1510 130 0.009
0.01 846 42 0.05
0.10 476 13 0.28
1.0 268 4.2 1.58

10.0 151 1.3 8.9

Since drops of radius r will generally satisfy the condition r << L,
the nature of turbulence induced collisions will turn first on the question of
whether r > 2, or r< .

It can be seen that even for the highest dissipation rates, only drops
greater than about 150 um- would be Targer than the dissipation scale eddies.
We conclude, therefore, that under most circumstances (and particulary for
drop sizes in the crital range 1< r €50 um ) a cloud droplet will execute
its collisional dynamics within a dissipation scale eddy. The precise nature
of the flow field within a dissipation scale eddy is not clearly understood
at present; however, such flow fields must, of necessity, be characterized

by a high shear rate.

The average shear rates in the dissipation scale eddy can be reiated
to the turbulence dissipation as (Reference 34)

S = (e/n)% = Y1,

The first effect of turbulence upon the collision rate of cloud drops
is thus to place them in a shear flow of average shearing rate S. Thus, two
drops of radii r;, r; lying within a collision cylinder will possess a re-
lative velocity with respect to one another of magnitude

AV(S) Z(r,+ 1) s

This collisional relative velocity mechanism, in contrast to that of gravi-
tational sedimentation, does not require a size difference between the col-
lisional partners.

The second effect of turbulence is to create an acceleration field a,
for the flow field of the drops in addition to that of gravity. Hence, dif-

ferential size relative motion will be enhanced by the presence of the tur-
bulent field.
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The third effect of turbulence upon collisional encounter is for the
drops with r > 33. This regime is the most complex involving the com-
plication of the flow field of eddy scales larger than the Taylor scale.
A simulation of the collision dynamics which may in some respects model
this regime with an arbitrarily varying background velocity field but
with turbulence induced shearing neglected Almeida (Reference 35) indicates,
as one would expect, the enhancement of collisional efficiencies of
such drops due to the agitation of the background field. However,
the collision efficiencies of such Targe drops are already much larger
than the minimal levels characteristic of drops in the 1-50 um range
even in the absence of turbulence. In addition, the critical range
for growth of 1-50 um will be such that drops turbulently collide
primarily by the shearing mechanism. We thus disregard the turbulence
effects on drops with r > 3y and include the effects of turbulence
on the shearing rate and acceleration of the flow field surrounding
drops within dissipation scale eddies.

Let us now consider the formulation of the collision kernel for the
collisional encounters of such drops. The total collision rate per unjt
volume between two populations of drops of radius n and number density
n, and radius r, and number density n, may be expressed as

N="n 1 v (rl,rz)

where v, (r,, r,) is the collision kernel. Five basic processes con-
tribute to the collision kernel in the atmosphere. These are

Turbulent Shearing
Turbulent Accelerations
Gravitational Sedimentation
Brownian Motion
Electrostatic Attraction

g wn
e ® a s s

In what follows, we restrict attention to the first three processes. Brownian
motion is only expected to be important for particle sizes much smaller than
the average cloud drop. No attempt ismade to estimate the influence of elec-
trostatic attraction.

The collision kernel v, may be expressed as (Reference 36)

2 =

vy Vi2 4 Vg2 4 V32

Where v;, V., Vi and the contributions of turbulence induced_shearing,
turbulence induced accelerations, and gravitational sedimentation respec-
tively . These are expressed as

Avlz(S) El (rx’ rz)ﬂ r%z

<
"

v, = /1.3 %f-Av1§g) E2 (ry, rp) ™ r%z

Ve = AV1§g) Ey (r1, ro)m r%z
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In the above AV1§S) is the effective relative velocity of the drops due to
the shearing motion of the fiuid expressed in terms of the shearing rate S:

AV1z(s) = G 511;—3

where S s given in terms of the turbulent dissipation rate. The collision

cylinder radius is ri, = (r; # r,). The relative velocity aV,{8) 1is the
difference between the terminal gravitational sedimentation velocities of

the two particles:
Avlz(g)= Wl - Vzl

The form of V3 (rj) depends upon the flow regime of the particles. In the
Stokes range

2 2
Vi (ry) =(-ﬁﬁ ‘1) g %‘“1’
wbere p, P, are the densities of drop Tiquid and surrounding fluid respec-
tively and n is the kinematic viscosity of the surrounding fluid. The quan-
tities E,» E,, E; are the collision efficiencies for each of the processes
respectively. These are defined in terms of,the cross-sectional area Q per-

pendicular to the relative velocity vector AViz within which the centers of
the drops must Tie if they are to collide compared to the geometrical hard sphere

collision cross-section of the two drops:

E:=
i
12

Although it is not indicated functionally, the collision efficiencies
Ei are functions of the radius ratio of the colliding drops and the relative
Reynolds number. For gravitational sedimentation, this number depends pure-
1y upon the radii r;, r,. For shearing motion, however, the efficiency
depends upon the shearing rate as well as the radii r, r,  The collision
efficiency E; in the absence of turbulence is summarized in Reference 37.
There are, as yet, no reliable calculations or measurements of the efficiencies
E,, E, (or correspondingly an overall efficiency which depends upon shearing
rate ) although the work in Reference 38 is noteworthy.

We thus may summarize the three collisional processes of interest here
by noting that of the three, shearing collisions are the only ones which
are operative among drops of equal size; hence turbulence provides a mecha-
nism (outside of the Brownian range) of coagulating drops of equal size which
is otherwise not available in the more conventional gravitational sedimenta-
tion picture of collisional coagulation.
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4.4 The Cloud Precipitation (CP) Model

4.4.1 The Division of Liquid Water Into Cloud and Precipitation Groups

As described in section 2, the collisional evolution of the droplet
spectrum of the cloud is such that a small number of larger droplets are
created and characterized as the tail of the cloud distribution. Because
the droplet sedimentation velocity is a strong function of particle size, it
is not useful to characterize the precipitation flux as an average over
the entire 1iquid water distribution. This is because the bulk of the drop-
lets have negligible sedimentation velocities. Rather, it is useful to de-
fine a precipitation group as those particles with sedimentation velocities
greater than a certain minimum value. This minimum value cannot be given
by the cloud micro physical process, but is determined by the overall
macro-dynamics of the problem at hand. This sedimentation velocity is
selected so that a drop will fall over aCharacteristic macro-length in some
characteristic macro-time. We thus select (as a model parameter for the
precipitation process) a sedimentation velocity (or corresponding parti-
cle size) which separates cloud droplets (whose contribution to the sedi-
mentation flux we neglect) from drizzle or rain drops (which constitute
the full precipitation flux.) Let us designate this velocity as V, and "
the corresponding particle radius as r,. Since most dynamical events
within the PBL take place on a length scale of the order of 10°m or less
and on a time scale of the order of 1hr. we find the minimum precipita-
tion velocity should be greater than or equal to about 1 km/hr_which cor-
responds to the sedimentation velocity of a particle of r,= 50 pm in still
air. The total liquid water is thus divided into two groups: a cloud

group consisting of all droplets with sizes r < r, and a precipitation
group with sizes r Sr,. Let us now specify the various collisional and
and condensation processes which take place between these two groups.

We choose not to describe the details of nuclei activation and the
dynamics of cloud spectrum formation. These processes may be summarized
in terms of two model parameters: the average cloud droplet radius R¢
and the non dimensional dispersion of the cloud spectrum oc. For the
present model, we choose to consider the limit oc = 0 and to specify Rc
as the singie cloud-type parameter which for virtually the full range of
cloud types lies in the range 5 umZR-<20 um. Thus, given the total
liquid water present as cloud, the cloud droplet number density nc¢ is
implied in terms of the cloud droplet average radius Rc. It also becomes
clear that in addition to the usuai conservation equations for total liquid
water, two additional conservation equations are required to determine the
precipitation water content and the number density (or average size) of
precipitation drops.

With the cloud droplet variables 1., R., so determined, three col-
lisional interaction processes and an evaporation process, then emerge which
define the precipitation drop group characteristics. These three collisional
processes are the cloud-cloud collisions, cloud-precipitation collisions,
and precipitation-precipitation collisions. Cloud-cloud collisions whose
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coalescences result in drops with radii greater than r, constitute the
cloud - to -cloud precipitation conversion process. Cloud-precipitation-
precipitation collisions constitute the precipitation aggregation process.
This Tatter process is only important in situations when the precipitation
drop number density is very large. When precipitation drops exist in other-
wise unsatuated air, evaporation of the precipitation drops takes place, and
we term this process the precipitation evaporation process.

4.4.2 Cloud and Precipitation Variables and Conservation Equations

The usual mixing ratios are given in terms of the average droplet sizes
Rc> Rp and number densities Nes Np for cloud and precipitation groups res-

pectively as

Hy = pv/poo

He = 4/3 TR} 0,/Pw N

Hp = 4/3 WRp3 Po/Pe Bp (4.7) .
Hy = He + Hy

H = H, +Hy

In Egs. (4.1) Py is the mass density of water in the vapor phase,
while pgy is the ass density of the Tiquid water, and P 15 the mass

density of the mixture. The mixing ratio for vapor is Hy, that of
cloud water He» and that of precipitation water Hp. The total Tiquid

mixing ratio is Hy and the total water mixing ratio is H.

The relationship between the constituents is as follows. If the mix-
ture is unsaturated (H < Hg), then

H. = 0
He = Hp (4.2)
Hy = H-H

In these statements it is assumed that the cloud droplets are in equili-
brium with the vapor; the precipitation drops need not be in equilibrium.
If the mixture is saturated (H > Hg) then

Hy = Hg

I
O
!

H - Hg - Hp (4.3)
HQ - HC+Hp

For the general case, we may thus write
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He = (H - Hg - Hp)A# (H - Hg)
Hz = HC + Hp (4.4)
HV = H - HQ

Where A# (x) 1is the Heaviside function.

It will be noted that in addition to the saturation mixing ratio Hs,
the water-air mixture system possesses two degrees of freedom as we have
constructed it consisting of cloud drops and rain drops. If H_ and H
are specified, all the wa%er species variables are determined. 1In gener%l
we shall utilize H and Hy as the two independent variables which de-
termine the various water sgecies variables. It can be readily seen that
these variables are sufficient to fix the values of Hy, H. » and Hg

The precipitation drop number density conservation statement is
)

Dn
_ P49 ) = - N 4.5
5t X4 (nP p1) Ncp pa (4.5)

In the above Vpi is the average sedimentation velocity of the precipi-
tation drops. The production of precipitation drops from cloud droplets
by the cloud to precipitation conversion process is Ncp. The loss of
%rec1p1tation drops by self-collisions among the precipitation drops 1is
pa.

The conservation equation of precipitation water is

DH
=P _3____ ) = q +H = H 4.6
Dt ¥ OX; (Hpr1) Hcp cc pe ( )

The production rate of precipitation water by the cloud to precipitation
conversion process is Hep. The production of precipitation water by the
cloud collection process is Hec. The loss of precipitation water by
evaporation of precipitation drops in unsaturated air is fipe. The various
rates Ncp, Npa, Hcp, Hcc, Hpe are described in subsequent sections. Equa-
tions (4.5) and (4.6) provide the additional dynamical equations which

fix the properties of the precipitation group, since these equations deter-
mine np and Hp, the average precipitation drop radius Rp is determined.
the third of Eqs. (4.1). The conservation equation of total water mixing
ratio is modified by the presence of a precipitation flux and becomes

DH ) -\ g
ot * 5x; (HpVpi) = O (4.7)

4.4.3 The Cloud Conversion to Precipitation (CP) Process

We now describe the CP process and develop expressions for the CP_rates
Nep, Hcp. Let Vv be the volume of any given drop and let v, be the volume
of the smallest cloud drop under consideration. Then m = Vv/v;, = (r/r1)?
is a size specification parameter. The number density of drops of size
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m we denote as m_. The total number of cloud droplets n. and precipi-
tation drops fp are then given by

m
n. =i o ny =i no (4.8)
m=1 = 4+

The distribution function of cloud droplets we denote as fm = Npy/Mee We

may express the rate Ncp as

e
=2 Y f f orgr ) (4.9)

where v(r1, r2) is thg collision kernel discribed in section 4.3,
The corresponding rate Hcp is

A

m*
2
y (0,/0,)(n2/2) Eg; (ktmy-k) f, fm*-k v(rk,rm*_k)

(4.10)

which may be expressed as

H

ep = (Po/PmeN (4.17)

A realistic calculation of the clouc to precipitation rate does require some

information about the cloud droplet distribution function fp since the size
m, lies in the tail region of the distribution.

There is one of the very few exact solutions to the coliisional
coalescence problem which provide?t? frame work for parameterization of the

CP process. The solution for f beginnin% with a single size of cloud
droplets ry at time t=t, subaec@ to a constant collision kernel v, is

(Reference 39)

£t = (1-1) ™ (4.12)

where T 1is determined by the solution of

dr  _ 2
5 = wo (1-T) (4.13)
with wp = vy HCO/Z where n., 1is the number density of cloud droplets at

time t=t0 when collisions become to be more important than condensation
growth in“determining cloud droplet size. Substituting the form (4.12) into
the CP rate expression (4.9) we find

R -2 (4.14)
Ncp ncm*vo (1'T)2 Tm*
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we shq]] use this result as the basis for this simplified two group model by
adopting the forms for Ncp and Hep given by Egs. (4.11) and (4.14) with
the following provisions:
(1) The choice of Vv, becomes an effective parameter
of the model. Loosely speaking, it should be se-
lected as an "average" collision kernel over the
range 1< m<my,

(2) For purposes of describing the conversion to pre-
cipitation rate, the cloud droplet spectrum is
approximated as originating as a single size at
the radius Fry = Re

4.4.4 The Cloud Collection (CC) Process

The collisional interaction of precipitation drops with cloud droplets,
we assume, results only in coalescences which enter the precipitation group.

The cloud collection rate NCC is then formally defined as

Mx o

N = n.n 2; fmfkv(rk’ rm)
cc cp =1 e+

We approximate this result as

N = n.ny v(R.s Rp) (4.15)

4.4.5, The Precipitation Evaporation Process

The evaporation of precipitation drops in uUnsaturated cloud-free air
has to be considered to complete the processes that balance the liquid
water existing as cloud droplets and as precipitation drops. The process
is represented by the precipitation evaporation rate Hpe. We assume

that all precipitation drops evaperate at a rate given by that of a
droplet at the average precipitation size Rp.

Let us now determine tie rate ',e. The evaporation rate from a drop-

let of radius Rp 1n stagnant air may be expressed as

H > = 44R D n_ (o 1-p..)/ 0, (4.16)
( P&/ stag p-p vl Ty
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where D 1is the diffusion coefficient, Py; s the saturation vaﬁor density
at the surface of the particle and Py 15 the vapor density of the environ-
ment.

For a droplet in & convective flow, the evaporation rate is enhanced.
Various correlations have been developed to model the increased evaporation
and they are generally of the form

) . 5 o %
(Hpe> =(Hpe) (1+¢ R s ) (4.17)
conv stag

where the Reynolds number Re 1s based upon the droplet diameter and sedimen-
tation velocity relative to the air, and the Schmidt number, S, 1is for

the vapor diffusion into the ambient. The coefficient C has the value
C=0.276 recommended in Reference 40. The precipitation evaporation rate

is then expressed as

e 2VRpds oF
Hye = 4mRpn/s_ [1+o.276(—n—p)/255][ Ho(H-H)) 1 (4.18)

when H<HS and Hp>0. When H>HS, Hpe =0.

4.5 TIllustration of the CP Model for the Homogeneous Cloud

Vertical inhomogeneity is an important aspect of any cloud and precipita-
tion process. However, preliminary to incorporation with the general, turbu-
lent, vertically inhomogeneous PBL model we may examine some of the character-
istics of the CP model for a homogeneous cloud with given turbulence and liquid
water inputs.

We thus consider a homogeneous cloud which at time t=0 consists of a

given amount of liquid water Hy existing comp]etg]y as cloud water
[Hp(t = 0)=0] with droplets of radius Rc. We consider the presence of

a uniform precipitation flux divergence term which we represent as

5 o 4.19
X (HVos) HoV /2 (4.19)

where . is a modeling parameter for this homogeneous illustration only re-
presentiﬁg an equivalent characteristic vertical gradient. We further as-
sume that the liquid water total Hg existing initially is not replenished
by further decreases in saturation mixing ratio as water precipitates from
the cloud.

To carry out specific calculations we must specify the values of the

collision efficiency functions Ey, E5, E5 and the average collision kernel
Vo 1n the cloud-precipitation conversion rate, Eq. 4.74. We represent Vo
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